Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Recently, it was pointed out that invoking a large value of the cosmic microwave background (CMB) optical depth,τCMB = 0.09, could help resolve tensions between Dark Energy Survey Instrument DR2 baryon acoustic oscillation data and the CMB. This is larger than the value ofτCMB = 0.058 measured from the Planck low-ℓpolarization data. Traditionally,τCMBis thought of as a constraint on reionization’s midpoint. However, recent observations and modeling of the Lyαforest of high-zquasars at 5 < z < 6 have tightly constrained the timing of the last 10%–20% of reionization, adding nuance to this interpretation. Here, we point out that fixing reionization’s endpoint, in accordance with the latest Lyαforest constraints, rendersτCMBa sensitive probe of the duration of reionization, as well as its midpoint. We compare low and high values ofτCMBto upper limits on the patchy kinematic Sunyaev–Zel'dovich (pkSZ) effect, another CMB observable that constrains reionization’s duration, and find that a value ofτCMB = 0.09 is in ≈2σtension with existing limits on the pkSZ from the South Pole Telescope (SPT). The strength of this tension is sensitive to the choices involved in modeling the other CMB foregrounds in the SPT measurement, and in the modeling of the pkSZ signal itself.more » « lessFree, publicly-accessible full text available July 3, 2026
-
Abstract Recent JWST observations atz > 6 may imply galactic ionizing photon production above prior expectations. Under observationally motivated assumptions about escape fractions, these suggest az ~ 8–9 end to reionization, in tension with thez < 6 end required by the Lyαforest. In this work, we use radiative transfer simulations to understand what different observations tell us about when reionization ended and when it started. We consider a model that ends too early (zend ≈ 8) alongside two more realistic scenarios withzend ≈ 5: one starting late (z ~ 9) and another early (z ~ 13). We find that the latter requires up to an order-of-magnitude evolution in galaxy ionizing properties at 6 < z < 12, perhaps in tension with measurements ofξionby JWST, which indicate little evolution. We study how these models compare to recent measurements of the Lyαforest opacity, mean free path, intergalactic medium thermal history, visibility ofz > 8 Lyαemitters, and the patchy kSZ signal from the cosmic microwave background (CMB). We find that neither of the late-ending scenarios is strongly disfavored by any single data set. However, a majority of observables, spanning several distinct types of observations, prefer a late start. Not all probes agree with this conclusion, hinting at a possible lack of concordance arising from deficiencies in observations and/or theoretical modeling. Observations by multiple experiments (including JWST, Roman, and CMB-S4) in the coming years will establish a concordance picture of reionization's beginning or uncover such deficiencies.more » « lessFree, publicly-accessible full text available February 5, 2026
-
ABSTRACT The thermal history and structure of the intergalactic medium (IGM) at $$z \ge 4$$ is an important boundary condition for reionization, and a key input for studies using the Ly $$\alpha$$ forest to constrain the masses of alternative dark matter candidates. Most such inferences rely on simulations that lack the spatial resolution to fully resolve the hydrodynamic response of IGM filaments and minihaloes to H i reionization heating. In this letter, we use high-resolution hydrodynamic + radiative transfer simulations to study how these affect the IGM thermal structure. We find that the adiabatic heating and cooling driven by the expansion of initially cold gas filaments and minihaloes sources significant small-scale temperature fluctuations. These likely persist in much of the IGM until $$z \le 4$$. Capturing this effect requires resolving the clumping scale of cold, pre-ionized gas, demanding spatial resolutions of $${\le} 2$$ $$h^{-1}$$kpc. Pre-heating of the IGM by X-rays can slightly reduce the effect. Our preliminary estimate of the effect on the Ly $$\alpha$$ forest finds that, at $$\log (k /[{\rm km^{-1} s}]) = -1.0$$, the Ly $$\alpha$$ forest flux power (at fixed mean flux) can increase $${\approx} 10~{{\ \rm per\ cent}}$$ going from 8 and 2 $$h^{-1}$$kpc resolution at $$z = 4{\!-\!}5$$ for gas ionized at $$z \ \lt\ 7$$. These findings motivate more careful analyses of how the effects studied here affect the Ly $$\alpha$$ forest.more » « less
-
ABSTRACT Quasar absorption spectra measurements suggest that reionization proceeded rapidly, ended late at z ∼ 5.5, and was followed by a flat ionizing background evolution. Simulations that reproduce this behaviour often rely on a fine-tuned galaxy ionizing emissivity, which peaks at z ∼ 6–7 and drops a factor of 1.5–2.5 by z ∼ 5. This is puzzling since the abundance of galaxies is observed to grow monotonically during this period. Explanations for this include effects such as dust obscuration of ionizing photon escape and feedback from photoheating of the IGM. We explore the possibility that this drop in emissivity is instead an artefact of one or more modelling deficiencies in reionization simulations. These include possibly incorrect assumptions about the ionizing spectrum and/or inaccurate modelling of IGM clumping. Our results suggest that the need for a drop could be alleviated if simulations are underestimating the IGM opacity from massive, star-forming haloes. Other potential modelling issues either have a small effect or require a steeper drop when remedied. We construct an illustrative model in which the emissivity is nearly flat at reionization’s end, evolving only ∼0.05 dex at 5 < z < 7. More realistic scenarios, however, require a ∼0.1–0.3 dex drop. We also study the evolution of the Ly α effective optical depth distribution and compare to recent measurements. We find that models that feature a hard ionizing spectrum and/or are driven by faint, low-bias sources most easily reproduce the mean transmission and optical depth distribution of the forest simultaneously.more » « less
-
ABSTRACT Recent measurements of the ionizing photon mean free path (MFP) based on composite quasar spectra may point to reionization ending at z < 6. These measurements are challenging because they rely on assumptions about the proximity zones of the quasars. For example, some quasars might have been close to neutral patches where reionization was still ongoing (‘neutral islands’), and it is unclear how they would affect the measurements. We address this question with mock MFP measurements from radiative transfer simulations. We find that, even in the presence of neutral islands, our mock MFP measurements agree to within $$30~{{\ \rm per\ cent}}$$ with the true spatially averaged MFP in our simulations, which includes opacity from both the ionized medium and the islands. The inferred MFP is sensitive at the $$\lt ~50~{{\ \rm per\ cent}}$$ level to assumptions about quasar environments and lifetimes for realistic models. We demonstrate that future analyses with improved data may require explicitly modelling the effects of neutral islands on the composite spectra, and we outline a method for doing this. Lastly, we quantify the effects of neutral islands on Lyman-series transmission, which has been modelled with optically thin simulations in previous MFP analyses. Neutral islands can suppress transmission at λrest < 912 Å significantly, up to a factor of 2 for zqso = 6 in a plausible reionization scenario, owing to absorption by many closely spaced lines as quasar light redshifts into resonance. However, the suppression is almost entirely degenerate with the spectrum normalization and thus does not significantly bias the inferred MFP.more » « less
-
ABSTRACT A recent measurement of the Lyman-limit mean free path at z = 6 suggests it may have been very short, motivating a better understanding of the role that ionizing photon sinks played in reionization. Accurately modelling the sinks in reionization simulations is challenging because of the large dynamic range required if ∼104−108M⊙ gas structures contributed significant opacity. Thus, there is no consensus on how important the sinks were in shaping reionization’s morphology. We address this question with a recently developed radiative transfer code that includes a dynamical sub-grid model for the sinks based on radiative hydrodynamics simulations. Compared to assuming a fully pressure-smoothed intergalactic medium, our dynamical treatment reduces ionized bubble sizes by $$10-20~{{\ \rm per\ cent}}$$ under typical assumptions about reionization’s sources. Near reionization’s midpoint, the 21 cm power at k ∼ 0.1 hMpc−1 is similarly reduced. These effects are more modest than the $$30-60~{{\ \rm per\ cent}}$$ suppression resulting from the higher recombination rate if pressure smoothing is neglected entirely. Whether the sinks played a significant role in reionization’s morphology depends on the nature of its sources. For example, if reionization was driven by bright (MUV < −17) galaxies, the sinks reduce the large-scale 21 cm power by at most 20 per cent, even if pressure smoothing is neglected. Conveniently, when bright sources contribute significantly, the morphology in our dynamical treatment can be reproduced accurately with a uniform sub-grid clumping factor that yields the same ionizing photon budget. By contrast, if MUV ∼ −13 galaxies drove reionization, the uniform clumping model can err by up to 40 per cent.more » « less
-
Abstract Observed scatter in the Lyαopacity of quasar sightlines atz< 6 has motivated measurements of the correlation between Lyαopacity and galaxy density, as models that predict this scatter make strong and sometimes opposite predictions for how they should be related. Our previous work associated two highly opaque Lyαtroughs atz∼ 5.7 with a deficit of Lyαemitting galaxies (LAEs). In this work, we survey two of the most highly transmissive lines of sight at this redshift toward thez= 6.02 quasar SDSS J1306+0356 and thez= 6.17 quasar PSO J359-06. We find that both fields are underdense in LAEs within 10h−1Mpc of the quasar sightline, somewhat less extensive than underdensities associated with Lyαtroughs. We combine our observations with three additional fields from the literature and find that while fields with extreme opacities are generally underdense, moderate opacities span a wider density range. The results at high opacities are consistent with models that invoke UV background fluctuations and/or late reionization to explain the observed scatter in intergalactic medium (IGM) Lyαopacities. There is tension at low opacities, however, as the models tend to associate lower IGM Lyαopacities with higher densities. Although the number of fields surveyed is still small, the low-opacity results may support a scenario in which the ionizing background in low-density regions increases more rapidly than some models suggest after becoming ionized. Elevated gas temperatures from recent reionization may also be making these regions more transparent.more » « less
-
Abstract Becker et al. measured the mean free path of Lyman-limit photons in the intergalactic medium (IGM) at z = 6. The short value suggests that absorptions may have played a prominent role in reionization. Here we study physical properties of ionizing photon sinks in the wake of ionization fronts (I-fronts) using radiative hydrodynamic simulations. We quantify the contributions of gaseous structures to the Lyman-limit opacity by tracking the column-density distributions in our simulations. Within Δ t = 10 Myr of I-front passage, we find that self-shielding systems ( N H I > 10 17.2 cm −2 ) are comprised of two distinct populations: (1) overdensity Δ ∼ 50 structures in photoionization equilibrium with the ionizing background, and (2) Δ ≳ 100 density peaks with fully neutral cores. The self-shielding systems contribute more than half of the opacity at these times, but the IGM evolves considerably in Δ t ∼ 100 Myr as structures are flattened by pressure smoothing and photoevaporation. By Δ t = 300 Myr, they contribute ≲10% to the opacity in an average 1 Mpc 3 patch of the universe. The percentage can be a factor of a few larger in overdense patches, where more self-shielding systems survive. We quantify the characteristic masses and sizes of self-shielding structures. Shortly after I-front passage, we find M = 10 4 –10 8 M ⊙ and effective diameters d eff = 1–20 ckpc h −1 . These scales increase as the gas relaxes. The picture herein presented may be different in dark matter models with suppressed small-scale power.more » « less
-
ABSTRACT The mean free path of ionizing photons, λmfp, is a key factor in the photoionization of the intergalactic medium (IGM). At z ≳ 5, however, λmfp may be short enough that measurements towards QSOs are biased by the QSO proximity effect. We present new direct measurements of λmfp that address this bias and extend up to z ∼ 6 for the first time. Our measurements at z ∼ 5 are based on data from the Giant Gemini GMOS survey and new Keck LRIS observations of low-luminosity QSOs. At z ∼ 6 we use QSO spectra from Keck ESI and VLT X-Shooter. We measure $$\lambda _{\rm mfp} = 9.09^{+1.62}_{-1.28}$$ proper Mpc and $$0.75^{+0.65}_{-0.45}$$ proper Mpc (68 per cent confidence) at z = 5.1 and 6.0, respectively. The results at z = 5.1 are consistent with existing measurements, suggesting that bias from the proximity effect is minor at this redshift. At z = 6.0, however, we find that neglecting the proximity effect biases the result high by a factor of two or more. Our measurement at z = 6.0 falls well below extrapolations from lower redshifts, indicating rapid evolution in λmfp over 5 < z < 6. This evolution disfavours models in which reionization ended early enough that the IGM had time to fully relax hydrodynamically by z = 6, but is qualitatively consistent with models wherein reionization completed at z = 6 or even significantly later. Our mean free path results are most consistent with late reionization models wherein the IGM is still 20 per cent neutral at z = 6, although our measurement at z = 6.0 is even lower than these models prefer.more » « less
An official website of the United States government
